Meeting: 1003, Atlanta, Georgia, SS 25A, AMS Special Session on Complex and Functional Analysis, I

1003-32-648 Andrew S Raich* (raich@math.wisc.edu), Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706. Heat equations and the $\bar{\partial}$ -problem on weighted L² spaces in \mathbb{C} . Preliminary report.

We study the $\bar{\partial}_b$ -problem on polynomial model domains (PMD) in \mathbb{C}^2 . A PMD $M = \{(z, w) : \Im(w) = p(z)\}$ where p is a subharmonic polynomial. $M \cong \mathbb{C} \times \mathbb{R}$, and $\bar{\partial}_b$ (on M) becomes $\bar{\partial}_b = \partial_{\bar{z}} - ip_{\bar{z}}\partial_{\tau}$. Taking the partial Fourier transform in τ , $\bar{\partial}_b$ is $\bar{Z}_t = \partial_{\bar{z}} + 2\pi t p_{\bar{z}}(z)$, a one-parameter family of operators indexed by t. If $2\pi t p(z) = \psi(z)$, $\bar{Z}_t = e^{-\psi}\partial_{\bar{z}}e^{\psi}$, the $\bar{\partial}$ operator on $L^2(\mathbb{C}, e^{-2\psi})$. Thus, $\bar{\partial}$ on weighted L^2 spaces connects with $\bar{\partial}_b$ on M. Christ obtains pointwise estimates on the fundamental solution R_t of $\bar{Z}_t u = f$, t > 0. He shows $\Box_t = \bar{Z}_t \bar{Z}_t^*$ is invertible on $L^2(\mathbb{C})$ and bounds R_t using \Box_t^{-1} . Unlike Christ, we study \Box_t^{-1} using $\partial_s u + \Box_t u = 0$ (HE) where $t \in \mathbb{R}$. We solve (HE) by $e^{-s\Box_t} f(z) = \int H_t(s, z, w) f(w) dw$. $H_t(s, z, w)$ is C^{∞} off $\{(s, z, w) : z = w, s = 0\}$ and we bound $H_t(s, z, w)$ and its derivatives. We estimate on G_t and R_t for all t and improve the $\Box_b = \bar{\partial}_b^* \bar{\partial}_b$ -heat equation results on PMD of Nagel-Stein. (Received September 25, 2004)