Omar A. AbuGhneim* (abugh1oa@cmich.edu), Central Michigan University, Mathematics Department, PE 403B, Mount Pleasant, MI 48858, and Ken W. Smith (smith1kw@cmich.edu), Central Michigan University, Mathematics Department, PE 214, Mount Pleasant, MI 48858. Survey on (96, 20, 4) difference sets.
McFarland constructed abelian difference sets with parameters $\left(q^{s+1}\left(\frac{q^{s+1}-1}{q-1}+1\right), q^{s}\left(\frac{q^{s+1}-1}{q-1}\right), q^{s}\left(\frac{q^{s}-1}{q-1}\right)\right)$, where q here is a prime power and s is a positive integer.
As a particularly interesting case, take $q=4$ and $s=1$ to obtain the parameters ($96,20,4$). This parameter set is the first one not covered in Kibler's survey of difference sets.
There are 231 groups of order 96. Up till recently, little is known about $(96,20,4)$ nonabelian difference sets. For a group G of order 96 which has normal subgroups of order three and four, we used the software GAP to construct 32- and 24 -images of hypothetical difference sets in G. Then we combined these 32- and 24 -images to construct a difference set or to show no such difference set exist. Also, we will state all other results have been done on $(96,20,4)$ difference sets. Among the 231 groups of order 96, there are 90 groups that admit $(96,20,4)$ difference sets and 121 groups that do not admit $(96,20,4)$ difference sets. The other 20 groups are still in doubt. (Received September 25, 2005)

