1014-06-311 Michelle L Knox* (michelle.knox@mwsu.edu), Department of Mathematics, Midwestern State University, 3410 Taft Blvd, Wichita Falls, TX 76308. Conditional Completeness of $C(X, \mathbb{R}_{\tau})$ Where \mathbb{R}_{τ} is a Weak P-Space.

Let \mathbb{R}_{τ} denote the real numbers equipped with the topology τ . Suppose τ is a topology on the real numbers \mathbb{R} which is finer than the usual topology such that \mathbb{R}_{τ} is a weak *P*-space, that is, a space in which countable sets are closed. We are interested in the lattice $C(X, \mathbb{R}_{\tau})$. Recall that a lattice *L* is conditionally (σ)-complete if every (countable) subset of *L* which is bounded above has a supremum. A lattice *L* is said to have the property (I) if the following holds: for any two countable sets $\{x_n\}, \{y_m\}$ with $x_n \leq y_m$ for all natural numbers n, m, there exists *h* in *L* such that $x_n \leq h \leq y_n$ for all *n*. We characterize when $C(X, \mathbb{R}_{\tau})$ is conditionally (σ)-complete and when it has the property (I). (Received September 08, 2005)