1014-11-1153 Ronald M. van Luijk* (rmluijk@math.berkeley.edu) and Adam M. Logan. Toward an explicit 2-descent on the Jacobian of a generic curve of genus 2. Preliminary report.
Let C be a curve of genus 2 over a number field K and J its Jacobian. A 2-descent on J requires that we decide whether a given twist J^{\prime} of J has a rational point over K. These twists are not easy to deal with as they are described by 72 quadrics in \mathbb{P}^{15}. The corresponding twists of the Kummer surface and its dual X associated to J are easier to handle. A twist X^{\prime} of X can be embedded as the complete intersection of three quadrics in \mathbb{P}^{5} and such an X^{\prime} contains 32 lines. Generically these lines generate the Picard group of X^{\prime}. The Galois action on the lines allows us to compute the algebraic Brauer group of X^{\prime}. The elements of this group describe the Brauer-Manin obstructions to the existence of rational points. (Received September 27, 2005)

