1014-11-1468 Judith Canner, Lenny Jones and Joseph Purdom* (lkjone@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257. Sequences of Reducible $\{0,1\}$-Polynomials over \mathbb{F}_{p}.
Let p be a prime, let $k \geq 1$ be an integer and let $f:=f(x)$ be a $\{0,1\}-$ polynomial with $f(0)=1$. Define a sequence of $\{0,1\}$-polynomials in $\mathbb{F}_{p}[x]$, denoted (f, k, p), by: $f_{1}:=f$ and $f_{i}:=f_{i-1}+x^{k n}$, for $i \geq 2$, where $k n$ is the smallest multiple of k larger than the degree of f_{i-1}, such that $f_{i-1}+x^{k n}$ is reducible over \mathbb{F}_{p}. Let \mathcal{M} denote the set of positive integer multiples of k larger than the degree of f that are not degrees of terms in (f, k, p). We investigate conditions on f, k and p which determine whether \mathcal{M} is empty, finite or infinite, and which guarantee, in the situation when \mathcal{M} is empty or finite, that the terms of (f, k, p) are periodic with respect to roots of these terms. In addition, we prove that if \mathcal{M} is empty for the sequence $(1, k, p)$, with $k \geq 2$, then this sequence is infinite. Finally, for $p \geq 5$, we show that there exists a $\{0,1\}$-polynomial f such that the sequence $(f, 1, p)$ is infinite. (Received September 28, 2005)

