1014-11-1468 Judith Canner, Lenny Jones and Joseph Purdom* (lkjone@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257. Sequences of Reducible $\{0,1\}$ -Polynomials over \mathbb{F}_p .

Let p be a prime, let $k \ge 1$ be an integer and let f := f(x) be a $\{0,1\}$ -polynomial with f(0) = 1. Define a sequence of $\{0,1\}$ -polynomials in $\mathbb{F}_p[x]$, denoted (f,k,p), by: $f_1 := f$ and $f_i := f_{i-1} + x^{kn}$, for $i \ge 2$, where kn is the smallest multiple of k larger than the degree of f_{i-1} , such that $f_{i-1} + x^{kn}$ is reducible over \mathbb{F}_p . Let \mathcal{M} denote the set of positive integer multiples of k larger than the degree of f that are not degrees of terms in (f, k, p). We investigate conditions on f, k and p which determine whether \mathcal{M} is empty, finite or infinite, and which guarantee, in the situation when \mathcal{M} is empty or finite, that the terms of (f, k, p) are periodic with respect to roots of these terms. In addition, we prove that if \mathcal{M} is empty for the sequence (1, k, p), with $k \ge 2$, then this sequence is infinite. Finally, for $p \ge 5$, we show that there exists a $\{0, 1\}$ -polynomial f such that the sequence (f, 1, p) is infinite. (Received September 28, 2005)