1014-11-407 Andrew H. Ledoan* (ledoan@math. uiuc.edu), University of Illinois at Urbana-Champaign,273 Altgeld Hall, MC-382, 1409 W. Green Street, Urbana, IL 61801-2975, Emre Alkan (alkan@math.uiuc.edu), University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1409 W. Green Street, Urbana, IL 61801-2975, Marian Vájáitu (marian.vajaitu@imar.ro), Romanian Academy, Simion Stoilow Institute of Mathematics, P O Box 1-764, 014700 Bucharest, Romania, and Alexandru Zaharescu (zaharesc@math.uiuc.edu), University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1409 W. Green Street, Urbana, IL 61801-2975. Discrepancy of Fractions with Divisibility Constraints. Preliminary report.
Niederreiter showed the discrepancy D_{N} of the Farey series \mathcal{F}_{Q} of order Q satisfies $D_{N} \asymp 1 / \sqrt{N_{Q}}$, where $N_{Q}=\# \mathcal{F}_{Q}$. Recently Dress proved the striking fact that $D_{N}=1 / Q$. In relation to their works, we provide bounds for the discrepancy of \mathcal{F}_{Q} with \mathcal{B}-free denominators satisfying divisibility constraints; i.e., given a sequence \mathcal{B} of positive integers $1<b_{1}<$ $b_{2}<\ldots$ such that

$$
\sum_{k=1}^{\infty} \frac{1}{b_{k}}<\infty \text { with } \operatorname{gcd}\left(b_{k}, b_{j}\right)=1 \text { for } k \neq j
$$

a number n is called \mathcal{B}-free if no element b_{k} of \mathcal{B} divides n. Thus for any $Q \geq 1$ and any such set \mathcal{B}, consider for any $q \equiv u \quad(\bmod k)$, with $k, u \geq 1$,

$$
\mathcal{F}_{Q, u, k, \mathcal{B}}=\left\{\frac{a}{q} \in \mathcal{F}_{Q} ; q \equiv u \quad(\bmod k), q \text { is } \mathcal{B} \text {-free }\right\}
$$

and define

$$
D_{N_{Q, u, k, \mathcal{B}}}=\sup _{0 \leq \alpha \leq 1}\left|\frac{A_{Q, u, k, \mathcal{B}}(\alpha)}{N_{Q, u, k, \mathcal{B}}}-\alpha\right|
$$

where $A_{Q, u, k, \mathcal{B}}(\alpha)=\#\left(\mathcal{F}_{Q, u, k, \mathcal{B}} \cap[0, \alpha]\right)$ and $N_{Q, u, k, \mathcal{B}}=\# \mathcal{F}_{Q, u, k, \mathcal{B}}$. We will show that

$$
D_{N_{Q, u, k, \mathcal{B}}} \asymp_{k, \mathcal{B}} \frac{1}{Q} .
$$

(Received September 14, 2005)

