1014-11-416 Michael Filaseta and Carrie E Finch* (cfinch@math.sc.edu), University of South Carolina, Department of Mathematics, Columbia, SC 29208, and Mark R Kozek. Sierpinski numbers with at least two distinct prime divisors.
A Sierpinski number is a positive odd integer k with the property that $k \cdot 2^{n}+1$ is composite for any natural number n. Chen showed that if r is an odd number or twice an odd number relatively prime to 3 , then there are infinitely many positive odd integers k such that k^{r} is a Sierpinski number, and conjectured that this is true for any r. We prove his conjecture by demonstrating a method for constructing Sierpinski numbers of the form $k^{4 r}$ such that $k^{4 r} \cdot 2^{n}+1$ has at least two distinct prime divisors for all n. (Received September 26, 2005)

