1014-11-600 John H. Jaroma* (jjaroma@austincollege.edu), Department of Mathematics \& C. S., Austin College, Sherman, TX 75090.

Factoring Generalized Repunits

. Preliminary report.
A repunit R_{n} is an integer written in decimal form as a string of n ones. More than twenty years ago, W. M. Snyder extended the notion of a repunit to one in which for some integer $b>1, R_{n}(b)$ has a b-adic expansion consisting of only ones; that is, $R_{n}(b)=\sum_{i=1}^{n-1} b^{i}=\frac{b^{n}-1}{b-1}$, where $n>0$. Examples include the Mersenne numbers, $M_{n}=2^{n}-1=$ $1+2^{1}+2^{2}+\ldots+2^{n-1}$, for $n \geq 2$. Snyder's admitted objective was to apply algebraic number theory in cyclotomic fields in order to determine the pairs of integers (n, b) under which $R_{n}(b)$ has a prime divisor congruent to 1 modulo n. Specifically, he proved that $R_{n}(b)$ has a prime divisor congruent to $1(\bmod n)$ if and only if either $n \neq 2$, or $n=2$ and $b \neq 2^{e}-1$, for all $e>1$. In this talk, we shall demonstrate how this result follows from theory pertaining to the Lucas sequences. (Received September 22, 2005)

