Curtis Cooper* (cnc8851@cmsu2.cmsu.edu), Dept. of Math. \& Comp. Sci., Central Missouri State University, Warrensburg, MO 64093. Bounds on a Remainder Term Associated with the Number of Base q Digits $\geq d$ Function.
Let $q \geq 2$ be a fixed integer. The base q representation of a positive integer k can be written in the form

$$
k=\sum_{r=0}^{\infty} a_{r}(q, k) q^{r}, \text { where } a_{r}(q, k) \in\{0,1, \ldots, q-1\} .
$$

Let d be a nonzero base q digit. Define the 'number of base q digits $\geq d$ ' function as

$$
\alpha_{\geq d}(q, k)=\sum_{r=0}^{\infty}\left[a_{r}(q, k) \geq d\right] .
$$

Here, we use Iverson's notation of putting brackets around a true-false statement. A bracketed true-false statement is 1 if the statement is true and 0 if it is false. For an integer $n \geq 1$, let

$$
A_{\geq d}(q, n)=\sum_{k=1}^{n-1} \alpha_{\geq d}(q, k) .
$$

First, we will show that

$$
A_{\geq d}(q, n)=\left(1-\frac{d}{q}\right) n \log _{q} n+O(n)
$$

Second, we define

$$
S_{\geq d}(q, n)=A_{\geq d}(q, n)-\left(1-\frac{d}{q}\right) n\left\lfloor\log _{q} n\right\rfloor
$$

where $\log _{q}$ denote the logarithm function with base q and $\lfloor\cdot\rfloor$ denotes the greatest integer function. We then show that if

$$
c>\max \left\{\frac{d}{q}, 1-\frac{d}{q}\right\},
$$

then

$$
-c<\frac{S_{\geq d}(q, n)}{n}<1-\frac{d}{q} .
$$

(Received September 26, 2005)

