1014-12-13 Hendrik W. Lenstra Jr.*, Universiteit Leiden. Entangled radicals, Part I.

Let K be a field of characteristic zero, and let Ω be an algebraically closed field containing K; one may think of K and Ω as being the fields **Q** and **C** of rational and complex numbers, respectively. Write K^* for the multiplicative group of non-zero elements of K, and $\sqrt{K^*}$ for the group of radicals over K, i.e., the subgroup $\{a \in \Omega^* : a^n \in K^* \text{ for some positive integer } n\}$ of Ω^* . The structure of the extension field $K(\sqrt{K^*})$ of K is independent of the choice of Ω , and the question poses itself to "understand" this structure solely in terms of the base field K. One of the difficulties one faces, is the doubtful validity of a "rule" like $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$. Another complication arises from "additive" entanglement of radicals, which manifests itself in enigmatic results from elementary number theory such as the following: if n is a positive integer for which $n^4 + 4^n$ is a prime number, then n = 1; and if p is a prime number with $p \equiv 1 \mod 4$, then $(p^p - 1)/(p - 1)$ is composite. The lecture presents a novel approach to describing the structure of $K(\sqrt{K^*})$ that is based on ring theory. It is both of theoretical interest and potentially useful in computer algebra. At least in the case $K = \mathbf{Q}$, the answers are as complete and explicit as one might reasonably desire. (Received April 05, 2005)