1014-15-413 Jason J Molitierno* (molitiernoj@sacredheart.edu), Department of Mathematics, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825-1000. A Matrix Theory Approach to the Genus of a Graph.

A graph \mathcal{G} on *n* vertices can be represented as a Laplacian matrix *L*. Labelling the vertices of \mathcal{G} from 1 to *n*, the matrix *L* is $n \times n$ where each diagonal entry $\ell_{i,i}$ is the degree of vertex *i* while the off-diagonal entries $\ell_{i,j}$ are -1 if vertices *i* and *j* are adjacent and 0 otherwise. The second smallest eigenvalue of *L* gives a measure of how connected \mathcal{G} is. Hence this eigenvalue is termed as the algebraic connectivity of \mathcal{G} . Intuitively, a graph of higher genus is likely to have a larger algebraic connectivity. In this talk, upper bounds for the algebraic connectivity of graphs of genus *k* are derived, where *k* is a positive integer. Moreover, it is shown that for certain positive integers *k*, there does not exist a graph which achieves the upper bound. Finally, some surprising results are given for graphs of genus 0, i.e. planar graphs. (Received September 15, 2005)