1014-15-76 Sundaresan Kondagunta^{*}, Department of Mathematics, 2121 Euclid Ave., Cleveland, OH 44115. θ -Frames in \mathbb{R}^n . Preliminary report.

Let $0 < \theta < \pi$ and $(\mathbb{R}^n, || ||) n \ge 2$, be the Euclidean space with the standard inner product coordinatized by the standard basis. **Definition.** A θ -frame in \mathbb{R}^n , $n \ge 2$ is an ordered basis of \mathbb{R}^n , $\{\vec{x}_i\}_{i=1}^n$, $n \ge 2$, such that $\|\vec{x}_i\| = 1$, $1 \le i \le n$, and $(\vec{x}_i, \vec{x}_j) = \cos\theta$, $i \ne j$. It is clear every θ -fram F_{θ} is canonically associated with a unique $n \times n$ matrix F'_{θ} .

Theorem 1 A θ -frame in \mathbb{R}^n , $n \geq 2$ exists if and only if $\cos\theta > -\frac{1}{(n-1)}$

Theorem 2 If m > n, each θ -frame in \mathbb{R}^n admits an extension to a θ -frame in \mathbb{R}^m , \mathbb{R}^m if $\cos\theta > -\frac{1}{(m-1)}$.

Theorem 3 For each θ , $\cos\theta > -frac1(n-1)$, there is a unique frame s_{θ} such that the matrix s_{θ}^{1} is positive definite. The matrix of a θ -frame is normal if and only if the transpose of the matrix is associated with a θ -frame.

Several interesting geometric properties of θ -frames are obtained.

The motivation of the investigation arose in answering a problem on θ -frames in \mathbb{R}^3 raised by an engineer. (Received July 19, 2005)