1014-30-275 Michael J. Miller* (millermj@lemoyne.edu), Dept. of Mathematics, Le Moyne College, Syracuse, NY 13214. Unexpected local extrema for the Sendov conjecture.
Let $S(n)$ be the set of all polynomials of degree n with all roots in the unit disk, and define $d(P)$ to be the maximum of the distances from each of the roots of a polynomial P to that root's nearest critical point. In this notation, Sendov's conjecture asserts that $d(P) \leq 1$ for every $P \in S(n)$.

Define $P \in S(n)$ to be locally extremal if $d(P) \geq d(Q)$ for all nearby $Q \in S(n)$, and note that identifying all locally extremal polynomials would settle the Sendov conjecture.

In this paper, we construct locally extremal polynomials of degrees $8,12,14,20$ and 26 that are of an unexpected form. (Received September 04, 2005)

