1014-33-1156 James C. Griffin* (jgriffin@math.ucf.edu), Dept of Mathematics, University of Central Florida, Orlando, FL 32826. Orthogonal Polynomials Arising from Generalized Trigonometric Identities. Preliminary report.
The equation $P_{n}^{2}-\left(x^{2}-1\right) Q_{n}^{2}=1$ where P_{n} and Q_{n} are polynomials of degree n and $n-1$ respectively, uniquely determines the P_{n} and Q_{n} for each n. The polynomials in this case correspond to the Chebyshev polynomials of 1 st and 2 nd kind. I will discuss the relationship between solutions to higher degree generalizations of this equation and other sequences of orthogonal polynomials. One such generalization is the equation $P_{n}^{3}+\left(x^{3}-1\right) Q_{n}^{3}+\left(x^{3}-1\right)^{2} R_{n}^{3}-3\left(x^{3}-1\right) P_{n} Q_{n} R_{n}=1$ where R_{n} is of degree $n-2$. (Received September 27, 2005)

