1014-39-1706 Kenneth S. Berenhaut (berenhks@wfu.edu), Department of Mathematics, Wake Forest University, Winston Salem, NC 27109, John D. Foley* (folejd4@wfu.edu), Department of Mathematics, Wake Forest University, Winston Salem, NC 27109, and Stevo Stević (sstevic@ptt.yu,sstevo@matf.bg.ac.yu), Mathematical Institute of Serbian Academy of, Knez Mihailova 35/I 11000, Beograd, Serbia and Montenegro. The Periodic Character of the Rational Difference Equation $y_{n}=1+\frac{y_{n-k}}{y_{n-m}}$.
This talk explores the behavior of positive solutions of the recursive equation

$$
y_{n}=1+\frac{y_{n-k}}{y_{n-m}}, \quad n=0,1,2, \ldots
$$

with $y_{-s}, y_{-s+1}, \ldots, y_{-1} \in(0, \infty)$ and $k, m \in\{1,2,3,4, \ldots\}$, where $s=\max \{k, m\}$. The main result is that if 2^{i} is the highest power of 2 which divides m, then if $2^{i+1} \nmid k, y_{n}$ tends to 2 , exponentially, and otherwise every solution tends to a period t solution, with $t=2 \operatorname{gcd}(k, m)$. This generalizes several known results including that in W. T. Patula and H. D. Voulov, On the oscillation and periodic character of a third order rational difference equation. Proc. Amer. Math. Soc. 131 (2003), no. 3, 905-909, where the result was proven for the case $k=2$ and $m=3$. (Received September 28, 2005)

