1014-52-1114 Wlodzimierz Kuperberg* (kuperwl@auburn.edu), Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5310. Optimal configurations of k congruent balls packed in a sphere in \mathbb{R}^n ($k \leq 2n$).

The minimum radius of a spherical container in \mathbb{R}^n that can hold k unit balls $(k \leq 2n)$ has been found by R.A. Rankin in 1955. For $k \leq n+1$ the configuration of the balls is unique, their centers forming the set of vertices of a (k-1)-dimensional regular simplex. For k = 2n, the configuration is unique as well, the balls' centers forming the set of vertices of a regular *n*-dimensional crosspolytope. But uniqueness does not hold in any of the remaining cases, $k = n+2, n+3, \ldots, 2n-1$. Here we present an alternate proof of Rankin's result for $n+2 \leq k \leq 2n$ that strengthens it by including a description of all of the non-unique optimal configurations, some of which exhibit traces of regularity. Also, we prove that the configuration space $C_n(k)$ is connected, for every $k \leq 2n$. (Received September 27, 2005)