1014-52-1409 Kristin A Camenga* (kacam@math.cornell.edu), Department of Mathematics, Cornell
University, Malott Hall, Ithaca, NY 14853-4201. Angle sums on polytopal complexes. Preliminary report.
Let K be a finite connected polytopal combinatorial $(d-1)$-manifold embedded in R^{d}. That is, K is a complex of polytopes such that the link of every vertex is PL-homeomorphic to the boundary of a $(d-1)$ sphere. The interior of K is the finite portion of R^{d} determined by K. The interior angle of a face F in K is $\omega_{K}(F)=\frac{v o l\left(B_{\epsilon}(x) \cap K\right)}{v o l\left(B_{\epsilon}(x)\right)}$ where x is in the interior of F and $B_{\epsilon}(x)$ is the ball of radius ϵ centered at x for ϵ sufficiently small. Then the $i^{\text {th }}$ angle sum of K is $\alpha_{i}(K)=\sum_{i-\text { faces } F \subseteq K} \omega_{K}(F)$ for $0 \leq i \leq d-1$.

It has long been known that if K is the boundary of a d-polytope, then $\sum_{i=0}^{d-1}(-1)^{i} \alpha_{i}(K)=(-1)^{d+1}$. This is called the Gram relation and is analogous to the Euler characteristic on polytopes. The Perles relation on angle sums is also analogous to the Dehn-Sommerville relations on faces of polytopes.

We discuss analogs of these results on a larger class of K, including K not homeomorphic to a sphere. These results continue to parallel the Euler characteristic. Specifically, for genus g surfaces in this class, $\sum_{i=0}^{d-1}(-1)^{i} \alpha_{i}(K)=$ $(-1)^{d+1} g$. (Received September 28, 2005)

