Jaap L. Geluk* (jgeluk@pi.ac.ae), The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates, and Kai W. Ng (kaing@hku.hk), Dept. of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong. Tail behavior of negatively associated heavy tailed sums. Preliminary report.
Consider a sequence $\left\{X_{k}, k \geq 1\right\}$ of i.i.d. random variables with subexponential d.f. $F(F \in \mathcal{S})$, that is

$$
P\left\{X_{1}+X_{2}>x\right\} \sim 2 P\left\{X_{1}>x\right\} \text { as } x \rightarrow \infty
$$

Using the convention $X_{0}=0$, we write

$$
X_{(n)}=\max _{0 \leq k \leq n} X_{k}, \quad S_{n}=\sum_{k=0}^{n} X_{k}, \quad S_{(n)}=\max _{0 \leq k \leq n} S_{k}
$$

Using the Pollaczek-Spitzer identity, Sgibnev (1996) studied the asymptotic behavior of the tail probability of $S_{(n)}$ in the case of i.i.d. summands. In particular, when $F \in \mathcal{S}$, he proved that $P\left(S_{(n)}>x\right) \sim n \bar{F}(x)$, where $\bar{F}(x)=P\{X>x\}$.

In the talk we drop the assumption of identically distributed random variables with $F \in \mathcal{S}$ and assume instead that $X_{k}, k \geq 1$ has a long-tailed distribution function $F_{k}\left(F_{k} \in \mathcal{L}\right)$, that is $P\left\{X_{k}>x+a\right\} \sim P\left\{X_{k}>x\right\}$ as $x \rightarrow \infty$. In this more general setup we explore under which conditions the asymptotic equalities

$$
P\left\{S_{(n)}>x\right\} \sim P\left\{X_{(n)}>x\right\} \sim P\left\{S_{n}>x\right\} \sim \sum_{k=1}^{n} \bar{F}_{k}(x)
$$

are valid.
An extension to negatively associated subexponential random variables will be discussed as well. This generalizes a result of Wang and Tang (2004). (Received September 25, 2005)

