1023-03-79 **Grigori Mints*** (mints@csli.stanford.edu), Department of Philosphy, Stanford University, Stanford, CA 94305. *Model elimination and cut elimination*. Preliminary report.

A new cut elimination method is obtained here by "proof mining" (unwinding) from the following non-effective proof that begins with extracting an infinite branch \mathcal{B} when the canonical search tree \mathcal{T} for a given formula E of first order logic is not finite. The branch \mathcal{B} determines a semivaluation so that $\mathcal{B} \models \bar{E}$.

(*) Every semivaluation can be extended to a total valuation.

For every derivation d of E and every model \mathcal{M} , $\mathcal{M} \models E$.

This is a contradiction showing that \mathcal{T} is finite, $\exists l \mathcal{T} < l$. A primitive recursive function L(d) such that $\mathcal{T} < L(d)$ is obtained using instead of (*)

(**) For every r if the canonical search tree \mathcal{T}^{r+1} with cuts of complexity r+1 is finite, then \mathcal{T}^r is finite.

Here reduction of (r + 1)-cuts does not introduce new r-cuts but preserves only one of the branches. (Received July 28, 2006)