1023-11-825 **Curtis N. Cooper*** (cooper@cmsu.edu), Dept. of Math. & Comp. Sci., University of Central Missouri, Warrensburg, MO 64093. *An Identity for Period k Second Order Linear Recurrence Systems*.

Let a_1 , a_2 , b_1 , and b_2 be real numbers. The period 2 second order linear recurrence system is defined to be the sequence $x_0 = 1$, $x_1 = a_1$, and

$$x_{2n+2} = a_2 x_{2n+1} + b_1 x_{2n},$$

$$x_{2n+3} = a_1 x_{2n+2} + b_2 x_{2n+1},$$

for $n \geq 0$. We will show that for $n \geq 4$,

$$x_n = (a_1 a_2 + b_1 + b_2)x_{n-2} - b_1 b_2 x_{n-4}.$$

Then we will generalize this result to the period $k \geq 2$ second order linear recurrence system. (Received September 22, 2006)