1023-14-1068

Benjamin J Howard* (bhoward@ima.umn.edu), I.M.A., University of Minnesota, 400 Lind Hall, 207 Church St SE, Minneapolis, MN 55455, and John Millson (jjm@math.umd.edu), Andrew Snowden (asnowden@math.princeton.edu) and Ravi Vakil (vakil@math.stanford.edu). The space of n ordered points on the line is cut out by simple quadrics if n is not six.

We study the projective invariants of n labelled points on the projective line – that is, polynomials in the homogeneous coordinates X_i, Y_i ($1 \le i \le n$) which are invariant under the diagonal action of SL(2). We shall assume the i-th point has weight w_i . Let R_w denote the graded ring of projective invariants, where $w = (w_1, \ldots, w_n)$.

By the classical theorem of Kempe (1894) we know that R_w is generated in degree one for any number of points n and weighting w, provided that the total weight $w_1 + \cdots + w_n$ is even. (If the total weight is odd, then R_w is zero in odd degree components, so we exclude this case for simplicity.) The generators correspond to directed multigraphs with vertex set $\{1, \ldots, n\}$ such that $\deg(i) = w_i$ for each i.

We show that $Proj(R_w)$ is cut out scheme-theoretically by linear and quadric relations in the above graphs, unless n=6 and each $w_i=1$. We show by other means that the ideal of relations is generated in degree ≤ 4 , for any n and w. (Received September 25, 2006)