Bogdan Petrenko* (petrenko@math.tamu.edu), Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, and Said Sidki (sidki@mat.unb.br), Department of Mathematics, University of Brasilia, 70.910 Brasilia DF, Brazil. On pairs of matrices generating matrix rings and their presentations.

Let $M_n(\mathbb{Z})$ be the ring of *n*-by-*n* matrices with integral entries, and $n \geq 2$. This paper studies the set $G_n(\mathbb{Z})$ of pairs $(A, B) \in M_n(\mathbb{Z})^2$ generating $M_n(\mathbb{Z})$ as a ring. We use several presentations of $M_n(\mathbb{Z})$ with generators $X = \sum_{i=1}^n E_{i+1,i}$ and $Y = E_{11}$ to obtain the following consequences.

- 1. Let $k \geq 1$. The following rings have presentations with 2 generators and finitely many relations:
 - (a) $\bigoplus_{i=1}^k M_{m_i}(\mathbb{Q})$ for any $m_1, \ldots, m_k \geq 2$.
 - (b) $\bigoplus_{i=1}^k M_{n_i}(\mathbb{Z})$, where $n_1, \ldots, n_k \geq 2$, and the same n_i is repeated no more than three times.
- 2. Let D be a commutative domain of sufficiently large characteristic over which every finitely generated projective module is free. We use 4 relations for X and Y to describe all representations of the ring $M_n(D)$ into $M_m(D)$ for $m \ge n$.
- 3. We obtain information about the asymptotic density of $G_n(F)$ in $M_n(F)^2$ over different fields, and over the integers. (Received September 06, 2006)