1023-34-477

John E. Ehrke* (john_ehrke@baylor.edu), John E. Ehrke, 2414 S. University Parks Dr. #2A, Waco, TX 76706. Positive Solutions of an nth Order Boundary Value Problem: A Functional Approach.

We apply a well-known fixed point theorem to guarantee the existence of a positive solution for the n^{th} order differential equation

$$y^{(n)} + f(y(t)) = 0, \quad t \in [0, 1],$$

having boundary conditions,

$$y^{(r_i-1)}(0) = 0, \quad 1 \le i \le k,$$

 $y^{(s_j-1)}(1) = 0, \quad 1 \le j \le n-k,$

where $\{s_1, \dots, s_{n-k}\}$ and $\{r_1, \dots, r_k\}$ form a partition of $\{1, \dots, n\}$ such that $r_1 < \dots < r_k$, $s_1 < \dots < s_{n-k-1}$, and $\{r_{k-1} \dots r_k\} \neq \{n-1, n\}$ and $\{s_{n-k-1}, s_{n-k}\} \neq \{n-1, n\}$. Under these assumptions we show this boundary value problem has a positive solution for all $n \geq 2$. Some consideration is given to bounds for the solution. (Received September 14, 2006)