1023 - 53 - 917

Andrew Bucki* (ajbucki@lunet.edu), Department of Mathematics, Langston University, Langston, OK 73050. *Lie Groups of Automorphisms on Almost r-Paracontact Riemannian Manifolds*. Preliminary report.

Let M_n be an n-dimensional Riemannian manifold with a positive definite metric g. If on M_n there exist a tensor field φ of type (1,1), r vector fields $\xi_1, \xi_2, \ldots, \xi_r$ (r < n), and r 1-forms $\eta^1, \eta^2, \ldots, \eta^r$ such that $\eta^{\alpha}(\xi_{\beta}) = \delta^{\alpha}_{\beta}$, $\varphi^2 = Id - \eta^{\alpha} \otimes \xi_{\alpha}$, $\eta^{\alpha}(X) = g(X, \xi_{\alpha})$, $\alpha \in (r)$, and $g(\varphi X, \varphi Y) = g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y)$, then $\Sigma = (\varphi, \xi_{\alpha}, \eta^{\alpha}, g)$ is said to be an almost r-paracontact Riemannian structure on M_n , and M_n is an almost r-paracontact Riemannian manifold. A vector field X on (M_n, Σ) is an infinitesimal automorphism of M_n if all structure tensors are Lie-parallel with respect to X. It is shown that the set L of all infinitesimal automorphisms of M_n is a Lie algebra and its maximum dimension is determined. Also, the maximum dimension of the group of isometries of M_n is found. A diffeomorphism f of M_n onto itself is an automorphism of M_n if it preserves all structure tensors. It is proven that the set $A(M_n)$ of all automorphisms of M_n is a Lie group. (Received September 22, 2006)