1035-51-1078 Jordi Lopez-Abad (abad@logique.jussieu.fr) and Lionel Nguyen Van Thé* (nguyen@math.ucalgary.ca), Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N1N4, Canada, and Norbert Sauer (nsauer@math.ucalgary.ca). Oscillation stability from a metric point of view.

In 94, Odell and Schlumprecht showed that ℓ_p is arbitrarily distortable whenever 1 , a result which solved the $longstanding distortion problem for <math>\ell_2$. From the point of view of the metric structure of the unit sphere \mathbb{S}^{∞} of ℓ_2 , this theorem exhibits a curious property: it proves the existence of a partition of \mathbb{S}^{∞} into two parts $\mathbb{S}^{\infty} = A \cup B$ such that for $\varepsilon > 0$ small enough, none of the ε -neighborhoods $(A)_{\varepsilon}$ or $(B)_{\varepsilon}$ includes an isometric copy of \mathbb{S}^{∞} . The purpose of this talk is to go deeper into the analysis of this metric phenomenon by studying a similar problem for another remarkable complete separable metric space which is known to share many Ramsey-theoretic features with \mathbb{S}^{∞} . As a consequence, it will be shown that even though $\mathcal{C}[0, 1]$ is not oscillation stable, its unit sphere S possesses the following partition property: for every $\varepsilon > 0$ and every partition $S = A \cup B$, $(A)_{\varepsilon}$ or $(B)_{\varepsilon}$ includes an isometric copy of S. (Received September 18, 2007)