Every low\(_n\) Boolean algebra, for 1 \(\leq n \leq 4\), is isomorphic to a computable Boolean algebra. It is not yet known whether the same is true for \(n > 4\). However, it is known that there exists a low\(_5\) subalgebra of the computable atomless Boolean algebra which, when viewed as a relation on the computable atomless Boolean algebra, does not have a computable copy. We adapt the proof of this recent result to show that there exists a low\(_4\) subalgebra of the computable atomless Boolean algebra which, when viewed as a relation on the computable atomless Boolean algebra, has no computable copy. This result provides a sharp contrast with the one which shows that every low\(_4\) Boolean algebra has a computable copy. That is, the spectrum of the subalgebra as a unary relation can contain a low\(_4\) degree without containing the degree 0, even though no spectrum of a Boolean algebra (viewed as a structure) can do the same. (Received September 03, 2011)