This talk concerns the cancellation problem for the direct product $A \times B$ of digraphs. Given digraphs A, B and C, we say that cancellation holds if $A \times C \cong B \times C$ implies $A \cong B$.

A classic result by Lovász gives exact conditions on C that guarantee whether cancellation holds or fails: If C admits a homomorphism into a disjoint union of directed cycles of prime lengths, then there exist non-isomorphic digraphs A and B for which $A \times C \cong B \times C$. Conversely, if no such homomorphism exists, then $A \times C \cong B \times C$ implies $A \cong B$.

However, this does not entirely resolve the cancellation problem. If C is arbitrary, we might reasonably ask what conditions on A (or B) guarantee that $A \times C \cong B \times C$ implies $A \cong B$. This talk spells out those exact conditions. Moreover, for arbitrary A and C we enumerate and describe all digraphs B for which $A \times C \cong B \times C$. The solution involves a new construction called the factorial of a digraph. (Received July 28, 2011)