A delivery person must leave the central location of the business, deliver packages at a number of addresses, and then return. Naturally, he/she wishes to reduce costs by finding the most efficient route. This motivates the following: Given a set of k distinct vertices $S = \{x_1, x_2, \ldots, x_k\}$ in a simple graph G, the closed k-stop-distance of set S is defined to be

$$d_k(S) = \min_{\theta \in \mathcal{P}(S)} \left(d(\theta(x_1), \theta(x_2)) + d(\theta(x_2), \theta(x_3)) + \ldots + d(\theta(x_k), \theta(x_1)) \right),$$

where $\mathcal{P}(S)$ is the set of all permutations of S. The closed 2-stop distance is twice the standard distance between two vertices. We study the closed k-stop center and closed k-stop periphery of a graph, for $k = 3$. (Received September 20, 2011)