A graph, G, is 2-factor isomorphic if it contains a 2-factor, F, and all other 2-factors are isomorphic to F. In other words, if a 2-factor is viewed as a collection of cycles that covers all vertices, then all 2-factors are composed of the same collection of unlabeled cycles. Faudree, Gould, and Jacobson give a formula and a construction for the maximum number of edges for bipartite 2-factor hamiltonian graphs as a function of $|V(G)|$. In this talk I generalize this result to any chosen 2-factor, any 2-factor with a fixed number of cycles, and find an overall maximum as a function of $|V(G)|$. I will also provide a general construction that attains these bounds. (Received September 21, 2011)