Two n-vertex hypergraphs G and H pack if there is a bijection $f: V(G) \to V(H)$ such that for every edge $e \in E(G)$, the set $\{f(v): v \in e\}$ is not an edge in H. Sauer and Spencer showed that any two n-vertex graphs G and H with $|E(G)| + |E(H)| < \frac{3n-2}{2}$ pack. Bollobás and Eldridge proved that, with 7 exceptions, if graphs G and H contain no spanning star and $|E(G)| + |E(H)| \leq 2n - 3$, then G and H pack. We generalize the Bollobás–Eldridge result to hypergraphs containing no edges of size 0, 1, $n-1$, or n. As a corollary we get a hypergraph version of the Sauer–Spencer result. (Received September 21, 2011)