In this paper we are settling a long-standing open problem. We prove that it is NP-hard to recognize T-tenacious graphs for any fixed positive rational number \(T \).

The concept of tenacity of a graph \(G \) was introduced by Cozzens, Moazzami and Stueckel in 1992, as a useful measure of the "vulnerability" of \(G \). The tenacity of a graph \(G \), \(T(G) \), is defined by \(T(G) = \min\{\frac{|S|+\tau(G-S)}{\omega(G-S)}\} \), where the minimum is taken over all vertex cutsets \(S \) of \(G \). We define \(\tau(G-S) \) to be the number of vertices in the largest component of the graph \(G - S \), and \(\omega(G-S) \) the number of components of \(G - S \). A connected graph \(G \) is called T-tenacious if \(|S| + \tau(G-S) \geq T\omega(G-S) \) holds for any subset \(S \) of vertices of \(G \) with \(\omega(G-S) > 1 \). If \(G \) is not complete, then there is a largest \(T \) such that \(G \) is T-tenacious; this \(T \) is the tenacity of \(G \). On the other hand, a complete graph contains no vertex cutset and so it is T-tenacious for every \(T \).

(Received August 26, 2011)