Given a Dirichlet character $\chi \mod q$, it is traditional to extend χ to all of $\mathbb{Z}/q\mathbb{Z}$ by declaring that $\chi(n) = 0$ when $(n, q) \neq 1$. When χ is primitive (i.e. not induced by a Dirichlet character mod d for some proper divisor d of q), this extension endows the associated Gauss sum and L-function with properties that are lost when χ is imprimitve. In this talk we will introduce a modification to the traditional extension of imprimitive characters which causes them to behave primitively, in the sense that the relevant properties of the Gauss sum and L-function take on the form usually only associated to primitive characters. (Received September 22, 2011)