Let \mathcal{A} be an indefinite rational division quaternion algebra with discriminant d equal to pq where p and q are primes such that $p, q > 2$ and let \mathcal{O}_{pq} be a maximal order in \mathcal{A}. Further, let $\mathcal{O}_{pq,p^{2r}q^{2s}}, r, s \geq 1$ be an order of index $p^{2r}q^{2s}$ in \mathcal{O}_{pq} with Eichler invariant equal to negative one at p and at q. Finally, let $\mathcal{O}_{1,p^{2r}q^{2s}}$ be the cocompact Fuchsian group given as the group of units of norm one in $\mathcal{O}_{pq,p^{2r}q^{2s}}$. Using the classical the Selberg trace formula, we show that the positive Laplace eigenvalues, including multiplicities, for Maass newforms on $\mathcal{O}_{1,p^{2r}q^{2s}}$ coincides with the Laplace spectrum for Maass newforms defined on the Hecke congruence group $\Gamma_0(M)$ where, M, the level of the congruence group, is equal to $p^{2r+1}q^{2s+1}$, i.e., the discriminant of $\mathcal{O}_{pq,p^{2r}q^{2s}}$. (Received September 13, 2011)