A zero-nonzero matrix pattern \mathcal{A} is said to be potentially nilpotent over a field \mathbb{F} if there exists a nilpotent matrix with entries in \mathbb{F} having zero-nonzero pattern \mathcal{A}. We present classes of patterns which are potentially nilpotent over a field \mathbb{F} if and only if \mathbb{F} contains certain roots of unity. We then introduce some sparse patterns of order $n \geq 4$ which are spectrally arbitrary over \mathbb{C} but not over \mathbb{R}. (A pattern \mathcal{A} of order n is said to be a spectrally arbitrary pattern over \mathbb{F} if for every degree n monic polynomial p with coefficients in \mathbb{F}, there is a matrix with pattern \mathcal{A} whose characteristic polynomial equals p.) We employ a slight modification of the nilpotent-Jacobian method. (Received July 30, 2011)