A group G is said to have property R_∞ if for every automorphism $\varphi \in \text{Aut}(G)$, there are an infinite number of φ-twisted conjugacy classes. The interest in R_∞ originates from topological fixed point theory. We show that if the Ω^n invariant of G is finite and nonempty then it consists of one or two points. In the case of a singleton, G has property R_∞. If Ω^n consists of two points, then there is an index 2 subgroup Γ in $\text{Aut}(G)$ such that there are an infinite number of φ-twisted conjugacy classes for every $\varphi \in \Gamma$. (Received September 22, 2011)