Let A be a uniform algebra on a set X, and fix distinct points ζ_1, \ldots, ζ_n in X. The associated interpolation body is the set

$$E = \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid \forall \epsilon > 0 \exists f \in A, \|f\| < 1 + \epsilon, f(\zeta_i) = z_i, \ i = 1, \ldots, n \}.$$

Note that E is a compact, convex subset of \mathbb{C}^n. As a special case, consider $X = \Omega$, a complex manifold, and $A = H^\infty(\Omega)$. Pick’s theorem describes E in terms of algebraic inequalities when Ω is the unit disk in \mathbb{C}, and hence E is a semialgebraic set in this case. More generally, it is known that E is semialgebraic when Ω is the unit bi-disk in \mathbb{C}^2 or a finite Riemann surface. In the negative direction, we prove the following

Theorem. There exists an interpolation body E for a uniform algebra so that E is not semialgebraic.

(Received September 15, 2011)