We study the nonlinear stability of shock waves for conservation laws with physical viscosities. Suppose that the initial data is a small perturbation of a weak shock. We show that the solution to the Cauchy problem converges to a translated shock profile. Detailed pointwise estimates on the convergence are obtained. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of the approximate green’s function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel principle. (Received September 15, 2011)