In this talk, coupled systems

\begin{align*}
 u_t + u_{xxx} + P(u, v)_x &= 0, \\
 v_t + v_{xxx} + Q(u, v)_x &= 0,
\end{align*}

of KdV-type are considered, where \(u = u(x, t), v = v(x, t) \) and \(x, t \in \mathbb{R} \). Here, subscripts connote partial differentiation and \(P \) and \(Q \) are quadratic polynomials in the variables \(u \) and \(v \). Attention is given to the pure initial-value problem in which \(u(x, t) \) and \(v(x, t) \) are both specified at \(t = 0 \), viz.

\[u(x, 0) = u_0(x) \text{ and } v(x, 0) = v_0(x) \]

for \(x \in \mathbb{R} \). Under suitable conditions on \(P \) and \(Q \), global well posedness of this problem is established for initial data in the \(L^2 \)-based Sobolev spaces \(H^s(\mathbb{R}) \times H^s(\mathbb{R}) \) for any \(s > -\frac{3}{4} \). (Received September 21, 2011)