Let L/K be a separable quadratic extension of fields, for example \mathbb{C}/\mathbb{R}, and let $\text{Gal}(L/K) = \{1, \sigma\}$. A rational map $\phi(z) \in L(z)$ is L/K-pseudo-real if there is a fractional linear transformation $f(z) \in L(z)$ such that $\phi^\sigma = f^{-1} \circ \phi \circ f$. With an eye towards dynamical applications, in this talk I will explain how a \mathbb{C}/\mathbb{R} pseudo-real map induces an algebraic map on the real projective plane \mathbb{RP}^2 and will discuss how this generalizes to general pseudo-real maps. (Received August 07, 2011)