A classical Hénon map is an automorphism $\phi : \mathbb{A}^2 \to \mathbb{A}^2$ of the form $\phi(x, y) = (y + 1 - ax^2, bx)$. This Hénon map is equivalent to the polynomial difference equation $x_{n+1} = 1 - ax_n^2 + bx_{n-1}$. Hénon maps are examples of regular affine automorphisms, which are automorphisms $\phi : \mathbb{A}^N \to \mathbb{A}^N$ whose extension to a rational map $\Phi : \mathbb{P}^N \to \mathbb{P}^N$ has the property that at least one of Φ or Φ^{-1} is defined at every point of \mathbb{P}^N. In this talk I will discuss number theoretic properties of Hénon difference equations and more general regular affine automorphisms. (Received August 07, 2011)