Euler ends his paper [1], with a very general series which we call the “devil’s series”. Any series which does not contain zero terms is a special case of this devil’s series. We show that the sum of this series can be expressed as \(A + B \). Euler gives only \(A \) as the sum of the devil’s series and ignores \(B \). There is a large class of series for which Euler’s sum is correct. We locate this class of series. We end with a conjecture as to why Euler did not reveal the full sum of the series.