Consider a multiobjective fractional programming problem (based on the generalized (ρ, η)−invexity of non-differentiable functions)

\[(P) \quad \text{Minimize } \left(\frac{f_1(x)}{g_1(x)}, \ldots, \frac{f_p(x)}{g_p(x)} \right) \]

subject to $x \in \mathbb{R}^n$ such that $h_j(x) \leq 0$ for $j=1,\ldots,m$,

where $f_i, g_i, i = 1, \ldots, p$ are real-valued functions, and $\epsilon = (\epsilon_1, \ldots, \epsilon_p)$ with $\epsilon_i \geq 0$ for $i=1,\ldots,p$. We explore parametric and semiparametric sufficient conditions for ϵ−efficient solvability of (P) based on the generalized (ρ, η)−invexity. (Received August 14, 2011)