Given a surface M, the complexity of a branched cover $M \to S^2$ of degree d and with branching set of cardinality $n \geq 3$ is defined as d times the hyperbolic area of the complement of its branching set in S^2. The simple S^2-branched cover area of a surface M is the infimum of all complexities of simple branched covers $M \to S^2$. This is an invariant of the surface M that tells us how efficiently M covers the 2-sphere. We prove that if M is a connected closed orientable surface of genus $g \geq 1$, then its simple S^2-branched cover area equals $8\pi g$. (Received August 19, 2011)