We can think of orbifolds as finite-group quotients of manifolds here. The orbifolds form more computable examples. Geometric structures on orbifolds are simply invariant G-structures. A real projective structure on an orbifold is a locally euclidean geodesic structure on it; that is, it is a local modelling by open subsets of a real projective space, on each of which a finite group of projective automorphisms acts. I would like to talk about the open problems on 2- and 3-dimensional orbifolds and the real projective and affine structures on these. Along the way, I will give a survey of some relevant results obtained since 1950s. (Received September 15, 2011)