Consider the classical single server queueing system subject to three different types of possible catastrophes represented by new states: -3, -2, -1. The recovery rates from these catastrophes vary and are dependent upon the severity of the occurring catastrophe. When a catastrophe occurs the system undergoes a restart birth sub-process to resume a single server system with no customers present. The transient probability functions of this system are determined using dual processes, lattice path combinatorics and randomization. The solution approach also works to solve systems having similar but more general multiple-catastrophe configurations. (Received September 19, 2011)