In this talk, we formulate the Clark formula for generalized \(\text{Lévy functionals} \) via white noise analysis. It is shown that the \(S \)-transform \(SF \) of a generalized \(\text{Lévy functionals} \) \(F \) satisfies the following formula

\[
SF(\eta) = E[F] + \int_0^1 \frac{d}{dt} SF(P_t(\eta))dt,
\]

where, for \(t \in \mathbb{R} \) and \(h \in L_c^2(\mathbb{R}^2, \lambda) \), \(P_t(h) = h \cdot 1_{(-\infty,t] \times \mathbb{R}} \) and \(E[\cdot] \) denote the generalized expectation. Then the Clark formula is obtain immediately by taking the inverse \(S \)-transform. (Received September 13, 2011)