Let X be a set of social alternatives. Let V be a set of ‘signals’. A variable population voting rule F takes any number of anonymous votes drawn from V as input, and produces a nonempty subset of X as output. For example, let R be a linearly ordered abelian group (e.g. \mathbb{R}). In an R-valued scoring rule, each vote in V assigns an R-valued ‘score’ to each alternative in X. We add up the scores of each alternative over all votes in the profile, and select the alternative(s) with the highest aggregate score. An R-valued balance rule is similar, but now an R-valued scoring rule is used to decide each two-way race; we select the alternative(s) which beat or tie every other alternative. F satisfies reinforcement if, whenever two disjoint sets of voters each select some subset $Y \subseteq X$, the union of these two sets will also select Y. We show that F satisfies reinforcement iff F is a balance rule. If F satisfies a form of neutrality, then F is satisfies reinforcement iff F is a scoring rule; this generalizes a result of Myerson (1995). We discuss the uniqueness of these representations. Finally, we axiomatically characterize two scoring rules: formally utilitarian voting and range voting. (Received July 28, 2011)