E. Szathmary and M. Smith (1997) represent the model of prebiological evolution by the equation for the concentration of molecules $\frac{dx}{dt} = kx^p$ (SMS model). Well established examples of non-exponential growth give global demography ($p = 2$) and some molecular replicator systems ($p = \frac{1}{2}$). It is not always clear why non-exponential growth is observed in reality. We show that SMS model can be understood within the frameworks of inhomogeneous population models.

Theorem.

1) Any SMS equation describes the total size of inhomogeneous frequency-dependent model $\frac{dl(t,a)}{dt} = \frac{ka(l(t,a))}{N(t)} = kaP(t,a)$ with Gamma-distributed parameter a at the initial moment; 2) Additionally, any hyper-exponential equation with $p > 1$ describes the total population size of inhomogeneous density-dependent model $\frac{dl(t,a)}{dt} = kal(t,a)$ with Gamma-distributed parameter a at the initial moment; The results can be extended to the model of a community composed of non-exponential populations and (partly) to Lifsons’ theory (1999) of prebiological evolution, which deals with competitions of replicators for extrinsic resources. (Received September 22, 2011)