In the absence of decoherence, the dynamics of a controlled quantum system is given by a Schrödinger equation, \(x' = Ax + u(t)Bx \), where \(x \) lies in some infinite dimensional Hilbert space, \(A \) is a skew-adjoint operator, \(B \) is a skew-symmetric linear operator accounting for the interaction of the environment with the system (e.g., through a laser) and \(u \) is the time variable scalar intensity of the control. We will restrict ourselves to the case where \(A \) has a purely discrete spectrum. The energy of the system is the \(A^{1/2} \) norm of \(x \).

A bilinear system is weakly coupled if \(|\Im \langle Ax, Bx \rangle| \leq |\langle Ax, x \rangle| \) for every \(x \). Most of the physical examples have this feature. For weakly-coupled bilinear systems, there exists an a priori bound for the growth of energy of the system in terms of the \(L^1 \) norm of the control \(u \). In particular, such systems can be approximated with arbitrary precision by their finite dimensional Galerkin approximations. This gives a theoretical justification of the approximations usually done in practice and provides constructive control algorithms.

These results have been recently obtained in collaboration with Nabile Boussaid (Besançon, France) and Marco Caponigro (Nancy, France). (Received July 02, 2011)