A Latin square of order \(n \) is an \(n \times n \) matrix where each row and column is a permutation of the integers \(1, 2, \ldots, n \). Two Latin squares \(A \) and \(B \), both of order \(n \), are orthogonal if all \(n^2 \) ordered pairs formed by juxtaposing the two matrices are unique. It is well known that there exists a pair of orthogonal Latin squares of order \(n \) for every positive integer \(n \neq 2, 6 \). A family of mutually orthogonal Latin squares (MOLS) of order \(n \) is a collection of Latin squares of order \(n \) such that each Latin square in the collection is orthogonal to every other Latin square in the collection. It is relatively easy to show that the maximum size of a collection of MOLS of order \(n \) is \(n - 1 \).

A gerechte design is a \(n \times n \) matrix where the matrix is partitioned in \(n \) regions \(S_1, S_2, \ldots, S_n \) where each row, column and region is a permutation of the integers \(1, 2, \ldots, n \). The popular puzzle Sudoku is an example of a gerechte design.

Results about mutually orthogonal Sudoku Latin squares of order \(n = k^2 \) are beginning to appear in journals. This talk discusses the adjustments that must be made when \(n \) is not a perfect square and the size of critical sets (clues) of mutually orthogonal Sudoku Latin squares. (Received September 13, 2011)